A macroscopic scale model of bacterial flagellar bundling.

نویسندگان

  • MunJu Kim
  • James C Bird
  • Annemarie J Van Parys
  • Kenneth S Breuer
  • Thomas R Powers
چکیده

Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full-scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method.

Flagellar bundling is an important aspect of locomotion in bacteria such as Escherichia coli. To study the hydrodynamic behavior of helical flagella, we present a computational model that is based on the geometry of the bacterial flagellar filament at the micrometer scale. We consider two model flagella, each of which has a rotary motor at its base with the rotation rate of the motor set at 100...

متن کامل

A bead-spring model for running and tumbling of flagellated swimmers: detailed predictions compared to experimental data for E. coli.

To study the swimming of the multi-flagellated bacterium Escherichia coli, we deploy a bead-spring hydrodynamic model (Watari and Larson 2010), whose body and flagellar geometry, motor torques, and motor reversals are adjusted to match the experimental observations of the Berg group (Turner et al. 2000; Darnton et al. 2007) during both running and tumbling of the bacterium. In this model, hydro...

متن کامل

Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling

Escherichia coli (E. coli) and other bacteria are propelled through water by several helical flagella, which are rotated by motors embedded at random points on the cell wall. Depending on the handedness and rotation sense, the motion of the flagella induces a flow field that causes them to wrap around each other and form a bundle. Our objective is to understand and model the mechanics of this p...

متن کامل

A study of bacterial flagellar bundling.

Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic int...

متن کامل

Role of body rotation in bacterial flagellar bundling.

In bacterial chemotaxis, E. coli cells drift up chemical gradients by a series of runs and tumbles. Runs are periods of directed swimming, and tumbles are abrupt changes in swimming direction. Near the beginning of each run, the rotating helical flagellar filaments that propel the cell form a bundle. Using resistive-force theory, we show that the counterrotation of the cell body necessary for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 26  شماره 

صفحات  -

تاریخ انتشار 2003